БизнесАкадемия - Информационный сайт

Существует большое количество законов распределения случайных ве-личин, описываемых в специальной литературе. Мы рассмотрим наиболее часто встречающиеся в инженерных расчетах надежности - показательное распределение и распределение Вейбулла.

Экспоненциальный (показательный) закон

Этот закон достаточно часто используется для описания ВБР не восста-навливаемых изделий. Это однопараметрический закон. Если отказы иссле-дуемого изделия подчиняются этому закону, то для данного изделия в дан-ных условиях эксплуатации λ имеет постоянное значение (λ = const), т.е. в равные промежутки наработки число отказавших изделий не зависит от того, сколько времени проработало изделие до рассматриваемого момента времени. Как правило, этим законом описываются внезапные отказы изделий.

Экспоненциальное распределение описывает наработку до отказа объектов, у которых в результате сдаточных испытаний (выходного контроля) отсутствует период приработки, а назначенный ресурс установлен до окончания периода нормальной эксплуатации.

Эти объекты можно отнести к «не стареющим», поскольку они работают только на участке с (t) == const . Круг таких объектов широк: сложные технические системы с множеством компонентов, средства вычислительной техники и системы автоматического регулирования и т. п. Экспоненциальное распределение широко применяется для оценки надежности энергетических объектов.

Считается, что случайная величина наработки объекта до отказа подчинена экспоненциальному распределению, если ПРО описывается выражением:

гдеλ– параметр распределения, который по результатам испытаний принимается равным

λ1 / 0 ,

где 0 – оценка средней наработки до отказа.

ВБР определяется согласно выражения: Р(t) = e λ t

Ч астота отказов α(t) = λ e- λ t

Средняя наработка до первого отказа t ср = 1 ⁄ λ

Интенсивность отказов (среднее число событий в единицу времени) λ = const

Графики изменения показателей безотказности при экспоненциальном распределении приведены на рис. 1.

Следует отметить, что при t < < 1 , т. е. при наработке t много меньшей, чем средняя наработка T 0 , выражения (1) – (4) можно упростить, заменив e -t двумя первыми членами разложения e -t в степенной ряд.

Например, выражение для ВБР примет вид:

Р(t)=1-λt+(λt) 2 /2!-(λt) 3 /3!+…≈1- λt

при этом погрешность вычисления P(t) не превышает 0,5 (t) 2 .

Закон Вейбулла

Это распределение чаще всего используется для исследования интен­сивности отказов для периодов приработки и старения. На примере распре­деления сроков службы изоляции некоторых элементов электрической сети подробно рассмотрены физические процессы, приводящие к старению и отказу изоляции и описываемые распределением Вейбулла.

Надежность наиболее распространенных элементов электрических се­тей, таких, как силовые трансформаторы, кабельные линии, в значительной степени определяется надежностью работы изоляции, «прочность» которой изменяется в течение эксплуатации. Основной характеристикой изоляции электромеханических изделий является ее электрическая прочность, которая в зависимости от условий эксплуатации и вида изделия определяется меха­нической прочностью, эластичностью, исключающей возможности образова­ния остаточных деформаций, трещин, расслоений под воздействием механи­ческих нагрузок, т.е. неоднородностей.

Среди перечисленных факторов, определяющих срок службы изоляции указанных элементов электрических сетей, одним из основных факторов, наи­более изученных теоретически и проверенных экспериментально, является тепловое старение. На основании экспериментальных исследований было по­лучено известное «восьмиградусное» правило, согласно которому повышение температуры изоляции, выполненной на органической основе, на каждые во­семь градусов в среднем вдвое сокращается срок службы изоляции.

В настоящее время в зависимости от класса применяемой изоляции ис­пользуются шести-, восьми-, десяти- и двенадцатиградусное правила. Срок службы изоляции в зависимости от температуры нагревания

Т И = Ае - γθ ,

где А - срок службы изоляции при θ = 0 - некоторая условная величина; γ - коэффициент, характеризующий степень старения изоляции в зависимо­сти от класса; θ - температура перегрева изоляции.

Если случайная величина распределена по закону Вейбулла, то

ВБР Р(t) = e^- λ 0 t k

Частота отказов α(t) = λ 0 kt k -1 e^- λ 0 t k

Интенсивность отказов λ = λ 0 kt k -1

Средняя наработка до первого отказа t cp =Г(1/k+1)/ λ 0 1/ k

где Г(х) – гамма функция «х», значения которой табулированы.

Параметр «К» оказывает влияние на форму кривых и называется параметром формы.

Параметр λ 0 - параметр маштаба, который характеризует растянутость кривых вдоль оси абсцисс. При К=1, имеет место показательный закон. При λ 0 = 2.5- 3.5 распределение Вейбулла приближается к нормальному. Этим объясняется гибкость закона Вейбулла и широкое его применение. Этим законом описываются процесс возникновения внезапных отказов, когда параметр «К» близок к единице, и постепенных (износовых) отказов, когда распределение становится близко к нормальному, а также тогда, когда совместно действуют причины, вызывающие оба этих отказа.

Это распределение чаще всего используется для исследования интенсивности отказов для периодов приработки и старения.

Надежность наиболее распространенных элементов электрических сетей, таких, как силовые трансформаторы, КЛ, в значительной степени определяется надежностью работы изоляции, «прочность» которой изменяется в течение эксплуатации. Прочность изоляции в зависимости от условий эксплуатации и вида изделия определяется механической прочностью, эластичностью, исключающей возможности образования остаточных деформаций, трещин, расслоений под воздействием механических нагрузок, т. е. неоднородностей.

Однородность и монолитность структуры изоляции и ее высокая теплопроводность исключают возникновение повышенных местных нагревов, неизбежно приводящих к увеличению степени неоднородности электрической прочности. Разрушение изоляции при функционировании элемента происходит в основном в результате нагревания токами нагрузок и температурных воздействий внешней среды. Механические нагрузки (вибрации, деформации, удары и др.) также приводят к разрушению изоляции.

Среди перечисленных факторов, определяющих срок службы изоляции указанных элементов электрических сетей, одним из основных факторов, является тепловое старение. На основании экспериментальных исследований было получено известное «восьмиградусное» правило, согласно которому повышение температуры изоляции, выполненной на органической основе, на каждые восемь градусов в среднем вдвое сокращается срок службы изоляции. В настоящее время в зависимости от класса применяемой изоляции используются шести- , восьми- , десяти- и двенадцатиградусное правила.

Срок службы изоляции в зависимости от температуры нагревания:

T и = А е-γς, (5.43)

где А - срок службы изоляции при ς = 0- некоторая условная величина;

γ- коэффициент, характеризующий степень старения изоляции в зависимости от класса;

ς - температура перегрева изоляции.

Другим важным фактором, вызывающим интенсивное старение изоляции, является обусловленная электрическими процессами при резких изменениях тока, например при резкопеременной нагрузке силового трансформатора, набросах и сбросах нагрузки, сквозных токах КЗ. Механические характеристики прочности изоляции также зависят от температуры. Предел механической прочности изоляции быстро снижается по мере ее нагревания, но в то же время она становится более эластичной.

При воздействии переменных неблагоприятных условий неоднородности материала увеличиваются, например микротрещина распространяется в глубь изоляции и при случайном повышении напряжения может вызвать пробой изоляции. Причиной отказа может быть даже небольшая неоднородность материала.

Число неблагоприятных воздействий (тепловых или электромеханических), вызывающих пробой изоляции, есть функция, убывающая в зависимости от размеров неоднородности. Это число минимально для наибольшей по размерам неоднородности (трещины, расслоения и др.). Т.о., число неблагоприятных воздействий, или срок службы изоляции, должно подчиняться закону распределения минимального числа из числа независимых СВ - чисел неблагоприятных воздействий, соответствующих различным по размерам неоднородностям, т. е. если Ти - время безотказной работы всей изоляции, а Тиi - время безотказной работы i-го участка (i = 1, 2,..., n), то:

T и = min (T и1,T и2,…,T иn). (5.44)

Таким образом, для определения закона распределения времени безотказной работы такого объекта, как изоляция элемента электрической сети, необходимо найти вероятность распределения минимальных времен безотказной работы совокупности всех участков. Причем наибольший интерес представляет случай, когда законы распределения времени безотказной работы отдельных участков имеют произвольный характер, но вид законов распределения одинаков, т. е. резковыраженных отличающихся участков нет.

В смысле надежности участки такой системы соответствуют последовательному соединению. Поэтому функция распределения времени безотказной работы такой системы:

q c (t) = 1 – n. (5.45)

Далее математическими преобразованиями выводится формула, при которой основным параметром является «порог чувствительности», т. е. элемент гарантированно не откажет в интервале времени (0, t0) (в частном случае t0 = 0). Если распределение не имеет порога чувствительности t0, то закон распределения называется распределением Вейбулла:

где с > 0 – некоторый постоянный коэффициент;

α – параметра распределения.

Этот закон распределения довольно часто используется при аппроксимации распределения времени безотказной работы систем с конечным числом последовательно (в смысле надежности) соединенных элементов (длинные КЛ со значительным числом муфт и др.).

Плотность распределения:

(5.47)

При α = 1 плотность распределения превращается в обычную показательную функцию (см. рисунок 5.12).

Рисунок 5.12 - Дифференциальная функция распределения времени безотказной работы изоляции по закону

Вейбулла

Рисунок 5.13 - Интенсивность отказов при

распределении по закону Вейбулла

Интенсивность отказов при распределении плотности по закону Вейбулла (см. рисунок 5.13):

λ(t) = αctα-1. (5.48)

Интенсивность отказов для этого закона в зависимости от параметра распределения может расти, оставаться постоянной (показательный закон) и уменьшаться.

Как видно из рисунков 5.12 и 5.13 экспоненциальный закон распределения является частным случаем закона Вейбулла при α = 1 (λ = const). При α = 2 функция распределения времени безотказной работы совпадет с законом Рэлея, при α »1 достаточно хорошо аппроксимируется нормальным законом распределения в окрестности среднего времени безотказной работы.

При соответствующем подборе параметра α можно с помощью закона Вейбулла описывать надежность и стареющих элементов (период старения и износа), у которых λ(t) возрастает, и надежность элементов, имеющих скрытые дефекты (период приработки), у которых λ(t) убывает с течением времени.

Математическое ожидание (среднее время) безотказной работы и дисперсия при распределении по закону Вейбулла:

T и.ср = Г(1+1/α) c-1/α, (5.49)

Д(Tи ) = c-2/α [Г(1+2/α) – Г2(1+1/α)]. (5.50)

где Г(х ) - гамма-функция .

Это распределение чаще всего используется при исследовании интенсивности отказов для периодов приработки и старения. На примере распределения сроков службы изоляции некоторых элементов электрической сети подробно рассмотрены физические процессы, приводящие к старению и отказу изоляции и описываемые распределением Вейбулла.

Надежность наиболее распространенных элементов электрических сетей, таких как силовые трансформаторы и кабельные линии, в значительной степени определяется надежностью работы изоляции, «прочность» которой изменяется в течение эксплуатации. Основной характеристикой изоляции электромеханических изделий является ее электрическая прочность, которая в зависимости от условий эксплуатации и вида изделия определяется механической прочностью, эластичностью, исключающей образование остаточных деформаций, трещин, расслоений под воздействием механических нагрузок, т.е. неоднородностей.

Однородность и монолитность структуры изоляции и ее высокая теплопроводность исключают возникновение повышенных местных нагревов, неизбежно приводящих к увеличению степени неоднородности электрической прочности. Разрушение изоляции при функционировании элемента происходит в основном в результате нагревания токами нагрузок и температурных воздействий внешней среды.

Рассмотрев два основных фактора (тепловое старение и механическая нагрузка), влияющих па срок службы изоляции, которые к тому же тесно связаны между собой, можно сделать вывод, что как усталостные явления в изоляции, так и тепловое ее старение в значительной степени зависят от качества изготовления и материала электротехнического изделия, от однородности материала изоляции, обеспечивающей отсутствие местных нагревов (так как трудно предположить, что откажет вся изоляция, т.е. пробой произойдет по всей площади изоляции).

Микротрещипы, расслоения и другие неоднородности материала случайно распределены в отношении своего положения и своей величины по всему объему (площади) изоляции. При воздействии переменных неблагоприятных условий как теплового, так и электродинамического характера неоднородности материала увеличиваются: например, микротрещина распространяется в глубь изоляции и при случайном повышении напряжения может вызвать пробой изоляции. Причиной отказа может быть даже небольшая неоднородность материала.

Естественно предположить, что число неблагоприятных воздействий (тепловых или электромеханических), вызывающих пробой изоляции, есть функция, убывающая в зависимости от размеров неоднородности. Это число минимально для наибольшей по размерам неоднородности (трещины, расслоения и др.).

Следовательно, число неблагоприятных воздействий, определяющее срок службы изоляции, должно подчиняться закону распределения минимальной случайной величины из совокупности независимых случайных величин, соответствующих различным по размерам неоднородностям:

где Г и - время безотказной работы всей изоляции; Г и, - время безотказной работы /"-го участка (/" = 1,2, п).

Таким образом, для определения закона распределения времени безотказной работы такого объекта, как изоляция элемента электрической сети, необходимо найти закон распределения минимального времени безотказной работы совокупности всех участков. Наибольший интерес представляет случай, когда законы распределения времени безотказной работы отдельных участков имеют различный характер, но вид законов распределения одинаков, т.е. резко выраженных отличий у участков нет.

С позиций надежности участки такой системы соответствуют последовательному соединению. Функция распределения времени безотказной работы такой системы из п участков, соединенных последовательно:

Рассмотрим общий случай, когда распределение Р(г) имеет так называемый «порог чувствительности», т.е. элемент гарантированно не откажет в интервале времени (0, /о) (в частном случае /о может быть равно 0). Очевидно, что функция Р(1ц + Д/) > 0 - всегда неубывающая функция аргумента.

Для системы можно получить асимптотический закон распределения времени безотказной работы:

Если распределение не имеет порога чувствительности / 0 , то закон распределения будет иметь вид


где с - некоторый постоянный коэффициент, с > 0; а - показатель Вейбулла.

Этот закон называется распределением Вейбулла. Он довольно часто используется при аппроксимации распределения времени безотказной работы системы с конечным числом последовательно (с точки зрения надежности) соединенных элементов (протяженные кабельные линии со значительным числом муфт и др.).

Плотность распределения времени безотказной работы

При а = 1 плотность распределения превращается в обычную показательную функцию (рис. 3.3).

Для интенсивности отказов при плотности распределения по закону Вейбулла получим

Интенсивность отказов для этого закона в зависимости от параметра распределения а может расти, оставаться постоянной (показательный закон) и уменьшаться (рис. 3.4).

При а = 2 функция распределения времени безотказной работы совпадает с законом Рэлея, а при а » 1 достаточно хорошо аппроксимируется нормальным законом распределения в окрестности среднего времени безотказной работы.

Рис. 3.3.

Рис. 3.4.

Как видно из рис. 3.3 и 3.4, экспоненциальный закон распределения является частным случаем закона Вейбулла при а = 1 (А. = const).

Закон Вейбулла очень удобен для вычислений, но требует эмпирического подбора параметров А. и а для имеющейся зависимости А.(/).

Математическое ожидание (среднее время) безотказной работы и дисперсия при распределении по закону Вейбулла:

где Г(х) - гамма-функция, определяемая по таблице Г(.г) (см. прил. 2); с - некоторый постоянный коэффициент, определяющий вероятность появления к элементарных повреждений на интервале времени (0, /)

Распределение Вейбулла (модель слабого звена)

Практическая необходимость учета непостоянства интенсивности отказов позволяет сделать вывод, что условия, приводящие к основным распределениям теории надежности (экспоненциальному, нормальному, логарифмически-нормальному и т.п.), указывают на необоснованность их использования для анализа надежности мощных генераторных ламп, клистронов, магнетронов, ламп бегущей волны и других элементов систем управления, которые в общем случае характеризуются старением с непостоянной скоростью износа, неоднородны по начальному качеству.

В 1939 г. шведский математик и инженер В. Вейбулл (1887-1979), анализируя отказы, обусловленные износом шарикоподшипников, предложил функцию распределения, удобную для описания долговечности материалов, отметив: «Представляется, что единственным практическим путем достижения успеха является выбор простой функции, эмпирическая ее проверка и затем ее окончательный выбор, если нет ничего лучшего».

Не останавливаясь на оценке справедливости этих слов в настоящее время, заметим, что в качестве простой функции Вейбулл выбрал двухпараметрическую функцию распределения вероятностей:

где Т, s - соответственно параметры масштаба и формы.

С середины 1950-х гг. интерес к распределению Вейбулла возрастает, поскольку оно оказывается хорошей моделью для описания надежности сложных устройств. Этот закон оказывается наиболее пригодным для анализа продолжительности безотказной работы мощных электровакуумных приборов СВЧ.

Б.В. Гнеденко установил, что распределение Вейбулла является асимптотическим распределением третьего типа для минимальных значений последовательности независимых величин. Доказано характеристическое свойство вейбулловского закона: если т| = min (X v Х 2 ,Х п) подчиняется вейбулловскому распределению, а случайные величины Х { , Х 2 , ..., Хп независимы и одинаково распределены, то они также подчиняются этому закону. Многие устройства содержат значительное число однородных элементов, находящихся в одинаковых условиях эксплуатации. Если повторяющиеся элементы являются определяющими по отношению ко времени безотказной работы прибора, то образуется схема, приводящая к распределению Вейбулла. Отказ прибора рассматривается как выход какого-либо одного из параметров за пределы установленного допуска. Можно полагать, что изменения этих параметров есть слабо связанные случайные процессы. Тогда, если т. - долговечность по /-му параметру, то ресурс в целом определяется как т = min (т р т 2 , ..., т л).

Функция надежности при распределении Вейбулла в общем случае определяется тремя параметрами и имеет вид:

где - , / 0 - параметры масштаба, формы, сдвига (параметр сдвига

называется еще «порогом чувствительности») }

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: